本文共 1527 字,大约阅读时间需要 5 分钟。
我真的不知道你在做什么或试图做什么,但我会这样做(假设西格玛和伽马对所有峰值都是相同的)。如果这在法布里·珀罗身上说得通的话,我想得不多)import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq
def cauchy(x, x0, g):
return 1. / ( np.pi * g * ( 1 + ( ( x - x0 )/ g )**2 ) )
def gauss( x, x0, s):
return 1./ np.sqrt(2 * np.pi * s**2 ) * np.exp( - (x-x0)**2 / ( 2 * s**2 ) )
def pseudo_voigt( x, x0, s, g, a ):
fg = 2 * s * np.sqrt( 2 * np.log(2) )
fl = 2 * g
f = ( fg**5 + 2.69269 * fg**4 * fl + 2.42843 * fg**3 * fl**2 + 4.47163 * fg**2 * fl**3 + 0.07842 * fg * fl**4+ fl**5)**(1./5.)
eta = 1.36603 * ( fl / f ) - 0.47719 * ( fl / f )**2 + 0.11116 * ( f / fl )**3
return a * ( eta * cauchy( x, x0, f) + ( 1 - eta ) * gauss( x, x0, f ) )
def all_peaks(x, mus, amps, s, g ):
out = 0
for m, a in zip( mus, amps ):
out += pseudo_voigt( x, m, s, g, a )
return out
def res( params, xData, yData):
mus = params[0:5]
amp = params[5:10]
sig = params[-3]
gam = params[-2]
off = params[-1]
yth = np.fromiter( ( abs( off ) + all_peaks( x , mus, amp, sig, gam) for x in xData ), np.float )
diff = yth - yData
return diff
sigma, gamma = 0.007, 0.02
offset = 0.01
muList = [ 0.5, 2.6, 4.8, 6.8, 8.9 ]
ampList = [ .135 ] * 5
data = np.loadtxt( 'calibration.txt' )
x = data[ :,0 ]
y = data[ :,1 ]
sol, err = leastsq( res, muList + ampList + [sigma , gamma, offset ], args=(x, y) )
print sol
plt.xlabel( "Voltage [V]" )
plt.ylabel( "Intensity" )
plt.plot( x,y,ls='', marker='o' )
plt.plot( x, sol[-1] + all_peaks( x, sol[0:5],sol[5:10], sol[-3], sol[-2]) )
plt.show()
这给了
^{pr2}$
下面的图表
转载地址:http://oreav.baihongyu.com/